Fizik Problem Serisi

Bölüm 1 - İçindekiler (17 Temmuz 2025)

1 Euler ve de Moivre Formüllerinin Sonuçları

Problem 1: Euler ve de Moivre formüllerini kullanılarak aşağıdaki denklemleri çıkarın:

\[\cos x=\frac{e^{ix}+e^{-ix}}{2}, \tag{1}\]

\[\sin x=\frac{e^{ix}-e^{-ix}}{2i}, \tag{2}\]

\[\sin^2x+\cos^2x=1, \tag{3}\]

\[\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta, \tag{4}\]

\[\sin(\alpha-\beta)=\sin\alpha\cos\beta-\cos\alpha\sin\beta, \tag{5}\]

\[\cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta, \tag{6}\]

\[\cos(\alpha-\beta)=\cos\alpha\cos\beta+\sin\alpha\sin\beta, \tag{7}\]

\[\tan(\alpha+\beta)=\frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}, \tag{8}\]

\[\sin 2\alpha=2\sin\alpha\cos\alpha, \tag{9}\]

\[\cos 2\alpha=\cos^2\alpha-\sin^2\alpha, \tag{10}\]

\[\cos 2\alpha=2\cos^2\alpha-1, \tag{11}\]

\[\cos^2\alpha=\frac{1+\cos 2\alpha}{2}, \tag{12}\]

\[\sin^2\alpha=\frac{1-\cos 2\alpha}{2}, \tag{13}\]

\[\cosh^2\alpha-\sinh^2\alpha=1, \tag{14}\]

\[\cosh\alpha=\cosh(-\alpha)=\sqrt{\sinh^2\alpha+1}, \tag{15}\]

\[\sinh\alpha=-\sinh(-\alpha)=\sqrt{\cosh^2\alpha-1}, \tag{16}\]

\[ \tanh\alpha=\frac{e^{\alpha}-e^{-\alpha}}{e^{\alpha}+e^{-\alpha}}=1-\frac{2}{e^{2\alpha}+1}=-\tanh(-\alpha), \tag{17}\]

\[\sin 4\alpha=4\cos^3\alpha\sin\alpha-4\cos\alpha\sin^3\alpha, \tag{18}\]

\[\cos 4\alpha=\cos^4\alpha+\sin^4\alpha-6\sin^2\alpha\cos^2\alpha, \tag{19}\]

\[\sin\alpha\sin\beta=\frac{1}{2}[\cos(\alpha-\beta)-\cos(\alpha+\beta)]. \tag{20}\]

2 Bölüm 1: 3-10. Sayfalar

3 Kapak ve Ön Sayfalar

4 Fizik Problem Serisi Hakkında